Total Tayangan Halaman

718

Minggu, 13 September 2020

SOAL CERITA INVERS MATRIKS DAN DETERMINAN

Assalamualaikum wr.wb saya aliya rahmah XI IPS 2 akan memberikan contoh soal cerita dengan penyelesaian menggunakan invers dan determinan matriks.

1. Ani membeli 3 kg jeruk, 1 kg apel dan 1 kg alpukat dengan harga Rp61.000,00. Ida membeli 2 kg jeruk, 2 kg apel dan 1 kg alpukat dengan harga Rp67.000,00. Wati membeli 1 kg jeruk, 3 kg apel dan 2 kg alpukat dengan harga Rp80.000,00. Jika mereka bertiga membeli buah di toko yang sama, berapakah harga 1 kg dari masing-masing dari buah tersebut?

.Jawab

.Misal  :

x = harga 1 kg jeruk

y = harga 1 kg apel

z = harga 1 kg alpukat

.

Bentuk sistem persamaan linear tiga variabelnya

3x + y + z = 61.000

2x + 2y + z = 67.000

x + 3y + 2z = 80.000

.

Bentuk matriksnya

A =  

Kita tentukan matriks minornya

M =  

C =  

Adjoin A =  

Untuk menentukan determinan A, kita gunakan cara kofaktor dengan baris 1

det A = a₁₁.C₁₁ + a₁₂.C₁₂ + a₁₃.C₁₃

det A = 3(1) + 1(-3) + 1(4)

det A = 4

maka

X = A⁻¹ . B

Jadi  

harga 1 kg jeruk = Rp12.000,00

harga 1 kg apel = Rp18.000,00

harga 1 kg alpukat = Rp7.000,00 

2. arman  membeli 5 pensil dan 3 penghapus, sedangkan Susi membeli 4 pensil dan 2 penghapus di toko yang sama. Di kasir, Arman membayar Rp 11.500,00 sedangkan Susi membayar Rp 9.000,00. Jika Dodi membeli 6 pensil dan 5 penghapus, berapa ia harus membayar?

Persoalan ini dapat diselesaikan menggunakan dua cara.

Jika maka dengan cara pertama, yakni cara invers, diperoleh .

Ingat, determinan dari adalah ad - bc.

Penyelesaian cara kedua adalah cara determinan, yaitu:

Penyelesaian

Dimisalkan harga satuan pensil = x dan harga satuan penghapus = y. Disusun ke dalam sistim persamaan linear dua variabel (SPLDV)

5x + 3y = 11.500

4x + 2y = 9.000

Sistim persamaan di atas dapat dinyatakan dalam bentuk matriks, yakni

Cara Pertama (Invers Matriks)

 

 

 

dan

Diperoleh harga satuan pensil Rp 2.000 dan harga satuan penghapus Rp 500.

Jadi, Dodi harus membayar [6 x Rp 2.000] + [5 x Rp 500] = Rp 14.500

-------------------------

Cara Kedua (Determinan Matriks)

Jadi, Dodi harus membayar [6 x Rp 2.000] + [5 x Rp 500] = Rp 14.500.

DAFTAR ISI

 https://brainly.co.id/tugas/1476814

Tidak ada komentar:

Posting Komentar

PENDAPAT BELAJAR DARING

NAMA: ALIYA RAHMAH KELAS: XI IPS 2 ABSEN:04  PENDAPAT SAYA SELAMA BELAJAR DARING ADA SISI POSITIF DAN SISI NEGATIFNYA YAITU: SISI POSITIF De...