Total Tayangan Halaman

Senin, 16 November 2020

PEMBAHASAN SOAL PAT

NAMA: ALIYA RAHMAH

XI IPS 2 (04)

PEMBAHASAN SOAL PAT

1.Dik: Premis I jika masyarakat membuang sampah pada tempatnya maka lingkungan bersih.

              premis II jika lingkungan bersih maka hidup akan nyaman

Dit?     kesimpulan:

JAWAB: Jika masyarakat membuang sampah pada tempatnya maka hidup akan menjadi nyaman 

2 Dit: buktikan 1+3+5... 2n-1= n²  

  jawab:

langkah 1 : 

 n=1

1= 1² 

1=1 (benar) 

langkah 2:

n=k

1+3+5.... 2k-1=k² (benar)

langkah 3:

n=k+1

1+3+5...2k-1+(2(k=1)-)= (k+1) ²  

    k² +2k+2-1                =  (k+1) ² 

   (k+1) (k+1)                = (k+1) ² 

      (k+1) ²                     =(k+1) ² 

dapat disimpulkan bahwa berbilai benar untuk n bilangan asli karena ruas kiri=ruas kanan

3. Dik:


Dit: tunjukan barisan geometri berlaku

Jawab: 


4.dik: 1 per 1.2+1 per 2.3+1 per 3.4+.....+1per n(n+1) untuk nεN

Dit: buktikan!

Jawab: 


5. Dik:a 2n-1 +b 2n-1 habis dibagi oleh a+b

   Dit? pembuktian:

  jawab:



















6. Dik: 5 2x+3x-1 habis dibagi 9 untuk setiap x anggota bilangan asli

   Dit? pembuktian:

   jawab:

 

7. Dik: bilangan asli n ≥ 5 akan berlaku 2n-3<  2n-2

   Dit: pembuktian   

   Jawab: 

n_>5={1,2,3,4,5}

2n-3<2n-2
=2(1)-3<2(1)-2
=(-1)<0(benar)

2(2) -3<2(2) -2
=1<2 (benar)

2(3) -3<2(3) -2
=3<4(benar)

2(4) -3<2(4) -2
=5<6( benar)

2(5) -3<2(5) -2
=7<8( benar)
 
8. Dik: 2x-3y=-13 dan x+2y=4
    Dit: penyelesaian
    jawab:

 

9. Dik:

5kg gula + 30kg beras = 410.000

2kg gula + 60kg beras = 740.000

Dit : 2kg gula + 5kg beras ?

Jwb :

gula = x

beras = y

5x + 30y = 410.000 |*2

2x + 60y = 740.000 |*1


10x + 60y = 820.000

2x + 60y = 740.000 

_______-


8x = 80.000

x = 10.000


subtitusikan x nya ke persamaan

 2x + 60y = 740.000

2(10.000) + 60y = 740.000

20.000 + 60y = 740.000

60y = 720.000

y = 12.000


jadi, harga 1kg gula = Rp 10.000 dan 1kg beras = Rp 12.000

maka 2kg gula dan 5kg beras

= 2(10.000) + 5(12.000)

= 20.000 + 60.000

= Rp 80.000

 

10. Dik: 5x+3y≼≤15

      Dit: daerah bersih?

      jawab:


5x + 3y ≤ 15            uji titik 0,0

x = 0  | x = 0            5(0) + 3(0) ≤ 15

y = 5  | y = 3                            0 ≤ 15 (benar)

 

 

11. Dik: 2x-5y>20

      Dit? daerah kotor?

     jawab:

 a. Mencari x dan y

x 0 10

y -4 0


b. Menentukan dan letak daerah kotor

2(0) - 5(0) > 20

0 > 20 (salah)

c. Membuat garis koordinat

 per 1.2+1 per 2.3+1 per 3.4+.....+i per n(n+1) untuk setiap bilangan asli


12. Dik: 5x+6y ≥30 , -2×+y≤0 y≥2

       Dit: daerah penyelesaian

       Jawab: 

   


13.Daerah yang diarsir pada gambar adalah himpunan penyelesaian dari sistem pertidaksamaan 3x + 5y ≤ 30 ; 2x - y ≤ 4 ; x ≥ 0 dan y ≥ 0.

Penyelesaian Soal :

LANGKAH PERTAMA (I)

Buatlah sistem pertidaksamaan pada setiap garis dengan menggunakan cara sebagai berikut :

Persamaan garis I melalui titik (0,6) dan (10,0) sehingga :

ax + by = ab

6x + 10y = 6.10

6x + 10y = 60     .... (÷2)

3x + 5y = 30

Kemudian perhatikan daerah arsiran yang mengarah ke bawah atau melalui titik (0,0). Jika arsiran melalui titik (0,0) maka jika diuji titik (0,0)  pernyataan dikatakan benar :

3x + 5y = 30

3.0 + 5.0 = 30

0 + 0 = 30

0 ≤ 30  (Benar)

Pertidaksamaannya : 3x + 5y ≤ 30

Persamaan garis II melalui titik (0,-4) dan (2,0) sehingga :

ax + by = ab

-4x + 2y = (-4).2

-4x + 2y = -8     .... (÷ 2)

-2x + y = -4

Kemudian perhatikan daerah arsiran yang mengarah ke sisi kiri atau melalui titik (0,0). Jika arsiran melalui titik (0,0) maka jika diuji titik (0,0)  pernyataan dikatakan benar :

-2x + y = -4

(-2).0 + 0 = -4

0 + 0 = -4

0 ≥ -4  (Benar)

Pertidaksamaannya :

-2x + y ≥ -4    .... (× -1)

2x - y ≤ 4

Kemudian pada arsiran juga terdapat garis x ≥ 0 dan y ≥ 0.

Sehingga pertidaksamaannya adalah :

3x + 5y ≤ 30 ; 2x - y ≤ 4 ; x ≥ 0 dan y ≥ 0.


14. Dik: Nilai Maksimum 3x + 2y ?

x + y > 5

Jawab:

sumbu x ; y = 0 ( 5, 0)

sumbu y ; x = 0 ( 0, 5)


maka Nilai Maksimumnya adalah

3x + 2y

( 5, 0) = 3(5) + 2(0) = 15

(0, 5) = 3(0) + 2(5) = 10

Nilai maksimum nya adalah 15


15. Dik:

X = banyaknya sedan

Y = banyaknya truk


Luas Parkiran:

sedan= 15

Truk = 15

Kapasitas 420


Kuantitas:

sedan= 1

Truk = 1

Kapasitas 60


Jawab:

•Persamaan garis 1 : 5x + 15y = 4200

Titik (0,0) merupakan salah satu himpunan penyelesaian dari

pertidaksamaan tersebut sehingga diperoleh

5x + 15y = 4200 disederhanakan menjadi

5x + 15y ≤ 4200


•Persamaan garis 2 : x + y = 60

Titik (0,0) merupakan salah satu himpunan penyelesaian dari

pertidaksamaan tersebut sehingga diperoleh

x + y = 60 disederhanakan menjadi

x + y ≤ 60


•Kendala non negative diberikan oleh

X ≥ 0, y ≥ 0


•Jadi model matematika nya

5x + 15y ≤ 4200; 4x + y  ≤ 60 ; x  ≥ 0, y  ≥ 0


Jawaban: 5x + 15y ≤ 4200; 4x + y  ≤ 60 ; x  ≥ 0, y  ≥ 0


16. diket :

- Model I memerlukan 1 m kain polos dan 3 m kain bergaris.

- Model II memerlukan 2 m kain polos dan 1 m kain bergaris.

- Persediaan kain polos 20 m

- persediaan kain bergaris 20 m

- Harga jual model I Rp.150.000,00

- Harga jual model II Rp.100.000,00


Dit : Penghasilan maksimum yang dapat diperoleh  = ...


Jwb : 

(1) Kita Buat Tabel Untuk memudahkan:

Model   ||    Polos  ||  Garis  ||  Harga

   I         ||       1       ||     3      ||  150.000

  II         ||       2      ||      1      ||  100.000

Stok      ||       20    ||      20   ||   maksimum


(2) Kita buat kalimat matematika dari Tabel diatas Dengan kain polos sebagai (x) dan kain bergaris sebagai (y) :

x + 2y ≤ 20

3x + y ≤ 20

dengan :

x ≥ 0

y ≥ 0

Dan Fungsi Tujuan adalah harga jual :

150.000x + 100.000y


(3) Tentukan nilai fungsi x dan y pada grafik fungsi :

Dari x + 2y = 20 :

x = 0, y ⇒ 0 + 2y = 20

            ⇒       2y = 20

            ⇒          y = 20/2

            ⇒          y = 10

Titik Koordinat ⇒ (0,10)

y = 0, x ⇒ x + 2y = 20

            ⇒ x  + 0  = 20

            ⇒         x  = 20

Titik Koordinat ⇒(20,0)


Dari 3x + y = 20

x = 0 , y ⇒ 3x + y = 20

             ⇒ 0   + y = 20

Titik Koordinat ⇒ (0,20)

y = 0, x ⇒ 3x + y = 20

            ⇒ 3x + 0 = 20

            ⇒ 3x        = 20

            ⇒   x        = 20/3

Titik Koordinat ⇒ (20/3,0)


Dari Titik - titik tersebut tarik garis lurus hingga terhubung.

Lalu kita cari titik potong dari garis tersebut, dengan metode eliminasi dan subtitusi :

Eliminasi y :

x + 2y = 20  | x 1  |   x + 2y = 20

3x + y = 20  | x 2 | 6x + 2y = 40

                            ============  -

                             -5x          = -20

                                x           = 20/5

                                x           = 4

Subtitusikan nilai x pada persamaan 3x + y = 20 :

3 . 4 + y = 20

12 + y = 20

       y = 20 - 12

       y = 8

Koordinat titik potong garis pada (4,8)


(4) Selanjutnya Dari Titik - titik yang berpotongan kita uji dengan :

Fungsi Tujuan f(x,y) = 150.000x + 100.000y :

Ada 3 titik pada Grafik (perhatikan lampiran)

A. Titik (0,10) = 150.000 . (0) + 100.000 . (10) =

                      = 0 + 1.000.000 = 1.000.000

B. Titik (4,8) = 150.000 . (4) + 100.000 . (8) =

                      = 600.000 + 800.000 = 1.400.000

C. Titik (20/3,0) = 150.000 . (20/3) + 100.000 . (0) =

                        = 1.000.000 + 0 = 1.000.000


Dari Hasil Uji diatas dapat dilihat, penghasilan terbesar pada titik (4,8) yaitu sebesar Rp.1.400.000,00

17.


18. 



Det (AtB)=( 10.34)-(12.12) = 340-144 =196

19. Dik: Diketahui

A = 

Matriks A tidak mempunyai invers

Ditanyakan  

x = .... ?

Jawab

Suatu matriks tidak mempunyai invers jika determinan matriks tersebut sama dengan nol


|A| = 0

(2x + 1)(5) – 3(6x – 1) = 0

10x + 5 – 18x + 3 = 0

8 – 8x = 0

8 = 8x

x = 

x = 1

20.

21.
 
 
22.
1-1 Tabel

Sehingga, kita mendapatkan matriks-matriks produksi S dan M sebagai berikut.
1-1 Matriks

Untuk menentukan banyaknya total pakaian yang diproduksi oleh JCloth, kita jumlahkan matriks S’ dengan M’ seperti berikut.1-4 Matriks

Dari penjumlahan matriks di atas, kita memperoleh informasi banyaknya pakaian yang akan diproduksi oleh JCloth. Dengan menjumlahkan semua elemen-elemen matriks penjumlahan tersebut, kita peroleh bahwa banyaknya pakaian yang akan diproduksi oleh JCloth kurang lebih 28.142.


23. pensil (x) dan penghapus (y)

Maka:
5x + 3y = 11.500 | x2 | 10x + 6y = 23000
4x + 2y = 9000 | x3 | 12x + 6y = 27000
——————-—-
-2x = -4000
x = 2000

5x + 3y = 11500
5(2000) + 3y = 11500
10000+ 3y = 11500
3y = 1500
y = 500

6(2000) + 5(500)
12000 + 2500
=14.500

 

24. Banyaknya makanan yang disetorkan setiap harinya adalah,


Matriks A = 
 
Matriks harga makanan adalah,

Matriks B = 

⇔ AB = pemasukan harian Bu Ani
⇔ AB = 
⇔       = 
⇔       = 
⇔       = 

Jadi, pemasukan harian yang diterima Bu Ani dari setiap kantin A, kantin B, dan kantin C berturut-turut adalah Rp 55.000,00; Rp 93.000,00; dan Rp 100.000,00.

Total pemasukan harian Bu Ani dari seluruh kantin adalah Rp 55.000,00 + Rp 93.000,00 + Rp 100.000,00 = Rp 248.000,00



25.dik:

x + y = 16

3x + 4y = 55

Jika ditulis dalam bentuk matriks:





Jadi, Lisa bekerja selama 9 jam sedangkan Muri bekerja selama 7 jam.



26. Transformasi geometri ↓

Penyelesaian Soal

Bayangan titik A (-1, 4) oleh refleksi terhadap garis y= -x

Pencerminan terhadap garis y = -x

A(a, b)  → gr y = -x → A'(-b, -a)

A(-1, 4) → gr y = -x → A'(-4, -(-1)) = (-4, 1)

 

27. (x, y) dicerminkan thp sumbu x : (x, -y) kemudian

(x, -y) dicerminkan thp sumbu y : (-x, -y)

Jadi

-x = x' => x = -x'
-y = y' => y = -y'

Bayangan dari : y = 3x² + 2x - 1 adalah
(-y') = 3(-x')² + 2(-x') - 1
-y' = 3x'² - 2x' - 1
y = -3x² + 2x + 1


28. Matriks refleksi y = x adalah:


Matriks rotasi 90° berlawanan jarum jam di pusat (0,0) adalah:


Menghasilkan komposisi transformasi:


Memberikan:


Yang mana:
x = -x'
y = y'

Substitusi ke persamaan yang akan menghasilkan:


29. Kita  siapkan variabel-variabel x dan y sebagai variabel awal, x' dan y' sebagai variabel bayangan setelah pencerminan garis, dan x" serta y" sebagai variabel bayangan setelah translasi.

Step-1 pencerminan garis x = k

Untuk x = 2

(x' , y') = (2(2) - x, y)

(x' , y') = (4 - x, y) akan disubtitusi ke Step-2

Step-2 translasi (- 3, 4)

Translasi (a, b) dengan a = -3 dan b = 4.

(x", y") = (x' + (- 3), y' + 4)

(x", y") = (4 - x + (- 3), y + 4)

(x", y") = (1 - x, y + 4)

Sehingga, x" = 1 - x dan y" = y + 4

Setelah diatur dengan pindah ruas menjadi 

Substitusikan ke bentuk awal x²+ y² = 4

⇔ (1 - x")² + (y" - 4)² = 4

Selanjutnya tanda aksen dapat dihilangkan

⇔ (1 - x)² + (y - 4)² = 4  

⇔ x² - 2x + 1 + y² - 8y + 16 = 4

⇔ x² + y² - 2x - 8y + 1 + 16 - 4 = 0

Kesimpulan

Dari langkah-langkah pengerjaan di atas, diperoleh persamaan bayangan lingkaran 


30. A(3,-2)

dipetakan oleh T(1 -2)

x' = x + 1 = 3 + 1 = 4
y' = y + (-2) = -2 + (-2) = -4

Bayangan A = A' = (4,-4)

lanjut rotasi [O , 90°]

x" = -y' = -(-4) = 4
y" = x' = 4

Bayangan akhir = A" = (4,4)
 
31.
 

32.
refleksi thd sb x

x' = x

y' = -y

Bayangan

y = x² + 3x + 3

-y' = x'² + 3x' + 3

y = -x² - 3x - 3

• lanjut dilatasi [O, 4]

x' = 4x → x = 1/4 x'

y' = 4y → y = 1/4 y'

Bayangan akhir

y = -x² - 3x - 3

1/4 y' = -(1/4 x')² - 3(1/4 x') - 3

1/4 y = -1/16 x² - 3/4 x - 3

Kedua ruas kalikan 4

y = -1/4 x² - 3x - 12 ✔

 

33.

 

34.


35.
.

36. maka
U1,U2,U3,...
50.000, 55.000, 60.000,....
maka 
a=50.000
b=5.000(beda per bulan)
yg ditanyakan=jumlah tabungan dlm 2 tahun, maka jumlah tabungan dalam 24 bulan
maka
Sn=n/2(a+Un)
cari Un dulu
Un=a+(n-1)b
U24 =50.000+(24-1)5.000
U24=50.000+23x5.000
U24=50.000 + 115.000
U24=165.000
lalu
Sn=n/2(a+Un)
S24=24/2(50.000+165.000)
S24=12(215.000)
S24=2.580.000
 
37.

38.

.

39.
 

 

40. 

Tidak ada komentar:

Posting Komentar

PENDAPAT BELAJAR DARING

NAMA: ALIYA RAHMAH KELAS: XI IPS 2 ABSEN:04  PENDAPAT SAYA SELAMA BELAJAR DARING ADA SISI POSITIF DAN SISI NEGATIFNYA YAITU: SISI POSITIF De...